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The spherical average of the Har t ree-Fock exchange potential depending on 
each spin orbital is compared with Slater's exchange potential, Vxs, as demon- 
strated for the phosphorus atom. It is shown that the former potential can be 
simulated by (a + br)Vxs, where r is the radius and the constants a and b are 
calculated for each spin orbital. This simulation is tested for the iron atom and 
it is found that the results agree well with those obtained from unrestricted and 
restricted Har t ree-Fock calculations, respectively. The applicability of  this new 
method in energy band structure calculations is briefly discussed. 
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1. Introduction 

The calculation of the Har t ree-Fock (HF) exchange potential in complicated 
systems such as crystals involves substantial computational effort. This is one of 
the reasons why "local  potentials" based on the pl:a approximation, e.g. the Slater 
[1 ], the Gfispfir-Kohn-Sham [2, 3], and the Xc~ [4] exchange potentials are widely 
used in energy band structure calculations. Slater's original intention was to simplify 
the H F  equations. But later it was found [5] that local potential schemes based on the 
"density functional formal ism" require an interpretation of the one-electron 
energies, which is different from the H F  case. 

In the present paper, a simulation of  the HF  exchange potential is proposed, which 
on the one hand keeps the simplicity of  the pl/a potentials and thus allows an applica- 
tion in energy band structure calculations and on the other hand retains the main 
features of  the H F  method and the interpretation of the one-electron energies 
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according to Koopmans' theorem [6]. This new HF simulation method will be 
studied on atoms in order to check its applicability�9 

First, for illustration purposes, the HF exchange potentials for all orbitals of the 
phosphorus atom are compared with the orbital-independent Slater exchange 
potential. Then, the simulation procedure is outlined for the P-3p orbital. 

Second, the iron atom is chosen as a test case for the accuracy of the present HF 
simulation, with the main emphasis on the one-electron energies. 

2. The Spherical Average of the HF Exchange Potential 

The HF equation for the spin orbital u~ can be written in the form [7] 

[ -V~ + Vc(1) § Vx,(1)]u,(1) = e~u,(1), 

where Vc is the Coulomb potential and Vx~, the exchange potential, given by 

Vx,(1) = - ~ wj[ fu*(1)u~(2)(2/r~=)u,(m)u,(2)d,=]/[u*(Du,(D] 

(1) 

(2) 

(using Rydberg atomic units), where dr denotes integration over space variables 
and summation over the spins and wj is the occupation number of the spin orbital 
uj. We assume 

~a(m~,), ms, = 1/2 
u,(1) = r x [.fl(msO, ms~ = --1/2 (3) 

with 

~ . ( 1 )  = R n t l , ( r l )  r l , m t ( ~ ~ l ) ,  ( 4 )  

Rmh(r ) being the solution of the radial Schr6dinger equation and Yhm~(f~) a 
spherical harmonic. 

If we calculate the spherical average of (2) for the spin up ( I' ) orientation, Vx~ + (rl), 
we obtain 

Vx, f(rl) = _ 1  fal [J~t wj/~jl/[q~*(1)~0,(l)] dr21, (5) 

I~j = f ~o*(1)@'(2)(2/r12)~oj(1)~o~(2) dr2, (6) 

where dv means integration over space variables only. We can solve the integral (6) 
by expanding lira2 in spherical harmonics [8]. Finally we obtain 

Vx, t (r0 : ~x.,,,m,+ (rl) 
n t - 1 It + 1 t 

= -[2/P.a,(rl)l ~ ~ P.,t,(r~) ~. [1(2l + 1)] 
n j = l  lj-=0 / = 0  

11 
njrt  1 �9 R,,,,,(r~) ~ ww,,m,+ r,~l,7" (7) 

raj= --I 1 
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with the following definitions: 

e~,h(r) = rRna,(r), (8) 

~Jnt f~l 
R,,,,~(rl) = (1/r~ +1) P~a,(r)P.j,,(r)r' dr 

;7 + ri P,~,,,(r)Pn,,,(r)(1/r '+1) dr, (9) 
1 

mtmlm mlmim mimtm Yljt,l = Azjh~ x Czjla , (10) 

Amj,.~ f y -1 , f2 lfla = YIjm,( tim,) Y~m d , (11) 

cmtmtm f * ,,,,, = Yi,=, Yhm, Y,,~ dn.  (12) 

For closed-shell systems. (7) can be simplified to 

St 

Fx~,,,,(rl) -- [1/(2I, + 1)1 ~ Fx=,,,=,t(rl) (13) 
mt= -h 

by eliminating the dependence on rn~ and by using the relation (Herzig [9], which 
is derived in the Appendix), 

z, z, z / .  lj l \2 
~ m~ = alfldvmjmtm = (21~ + 1)(21y + 1)(2l + 1 ) I ;  ) , (14) 

m ~ = - h r n j = - t j  = - Z  0 0 

(~ lj s  3-j coefficients for rn~ = r n j = m  = 0 .  Finally where 0 

we obtain the following form (for both spin directions) 

gx~.h(r~) = -[2/P.m(r~)l ~ (21, + 1)P~,,,(r~) 
ni=l lt=0 

0 0 R,,t,,(r~). (15) 
l = 0  

3. Comparison between the HF and Slater's Exchange Potentials 

In Figs. la  and lb the HF  exchange potentials (according to Eq. 7) are shown for 
the orbitals of  the phosphorus atom in its ground state. For the calculation of (9) 
the radial functions are taken from Clementi and Roetti [10]. (Figs. la and lb are 
similar to results given by D. R. Hartree [11] for the closed shell system Cu +, 
though he did not indicate the method of calculation.) One can see from these figures 
that in general the exchange potential decreases with increasing quantum numbers 
n and l. In its ground state 4S, the phosphorus atom has 9 electrons with spin up ( t ) 
and 6 with spin down (~) .  Therefore the exchange potential for given quantum 
numbers n and l differs for spin up and spin down, where the modulus of the 
exchange potential of nl ~ is always greater than that of nl ~. It can also be seen 
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Fig. 1. Hartree-Fock (labelled by the orbital quantum numbers) and Slater's exchange 
potential versus the radius according to Eq. (7) and (16) for the phosphorus atom in its ground 
state 4S 

that the modulus of  the exchange potential o f  the empty 3p ~, is considerably 
smaller than that of  the occupied orbitals. 

In Figs. la  and b also Slater's exchange potential [1] 

Vxs(r) = -3[(3/~r)p(r)] 1/3 (16) 

is given for comparison and shows that the Slater approximation overestimates the 
HF exchange potential in the region of  small radii and underestimates the HF 
exchange in the region far away from the nucleus. 
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4. Method of Simulation 

The HF  exchange potential has the following features: I) the dependence on the 
quantum numbers n, l, and m, 2) the dependence on the spin densities, and 3) the 
distinction between occupied and empty orbitals. Retaining these features, a 
simulation of the HF  exchange potential of the form 

Vxi~(r) ~ (a~ + b~r )Vxs ( r )  (17) 

is proposed (analogously for the spin down case). This approximation is justified 
by the following consideration illustrated by an example: 

In Fig. 2 a plot of  the function 

a~ ~ (r) = Vx~ ~ (r)/Vxs(r) (18) 

is shown together with the radial density 

oh(r) = 4rrr2R~h(r) (19) 

for the 3p t orbital of  the phosphorus atom in its ground state ~S. It can be seen 
from this figure that a is almost linear in the region of high density or, where the 
approximation should be accurate, a fact, which justifies ansatz (17). In order to 
have a unique procedure for the determination of the a and b values we take the 
tangent to a~ at that radius, where ~ has its absolute maximum. 

5. Results 

The calculation of the spherical averaged HF exchange potential is a straight- 
forward procedure once the angular dependent integrals (10) are evaluated. In all 
calculations discussed here the required integrals (11) can be obtained analytically. 
However, for the general case a dosed formula for evaluating (11) is unknown to 
the author. 

A simulation of the HF exchange potential as described in the previous section was 

0 1 2 
r (a.u.) 

Fig. 2. For the 3p ~ -orbital of the phosphorus atom in its ground state 4S the following two 
quantities are shown as a function of the radius, r : (1) the function a (dimensionless) defined by 
Eq. (18), and (2) the radial charge density a (in atomic units) according to Eq. (19) 



344 E. Wimmer 

Table 1. Values of a and b parameters for the iron atom, Fe ls22s22p63se3pd(3d t )S(3d ~, )14s2, 
in its ground state 5D. w denotes the occupation number of the orbital with quantum numbers 
n, l, and m and spin up ( ~' ) or spin down ( ~ ) 

him w a b nlm w a b 

100 t 1 0.90490 5.95954 31-1  ~ 1 0.68924 0.37829 
100 ~ 1 0.90491 5.95917 310 + 1 0.64660 0.33652 

200 ~ 1 0.89148 1.21974 311 ~ 1 0.64660 0.33652 
200 ~ 1 0.91698 1.05409 3 2 - 2  I 1 0.67522 0.42598 
21-1  I 1 0.76701 1.40091 32-1  ~ 1 0.67522 0.42598 
210 I 1 0.76701 1.40091 320 ~ 1 0.67522 0.42598 
211 ~ 1 0.76701 1.40091 321 t 1 0.67522 0.42598 
21-1  ~ 1 0.77916 1.30256 322 t 1 0.67522 0.42598 
210 ~ 1 0,78379 1.26185 32--2 ~ 1 0,61808 0.32944 
211 ~ 1 0.78379 1.26185 32--I ~ 0 0.28449 0.15112 
300 I 1 0.81349 0.57807 320 + 0 0.28344 0.14987 
300 ~ 1 0.73496 0.43179 321 ~ 0 0.27128 0.13553 
31--1 t 1 0.77855 0.51117 322 + 0 0.27128 0.13553 
310 ~ 1 0.77855 0.51117 400 ~ 1 0.57238 0.16948 
311 ~ 1 0.77855 0.51117 400 ~ 1 0.33272 0.23772 

performed for the iron a tom in its ground state SD and led to a and b parameters  
for each spin orbital as given in Table 1, where for the evaluation o f  (9) the radial 
wave functions f rom Clementi and Roetti  [I0] have been used. I t  can be seen f rom 
Table 1 that  the values o f  a and b generally decrease with increasing quan tum 
numbers  n and I and that  they differ markedly between the occupied and un- 
occupied 3d-states. In  addition, the a and b values corresponding to orbitals with 
the same n, I, and m quantum numbers  but opposite spin are affected by the 
unsymmetrical  spin distribution of  the d-electrons. 

Using the a and b values f rom Table 1, an exchange potential for each orbital is 
defined by Eq. (17). With these potentials a self-consistent a tomic calculation can 
be carried out  using a modified Herman-Ski l lman program [12]. The iteration 
procedure can be started by using X~vt [13] wave functions to generate the first Vxs 
needed in Eq. (17). 

Averaging the a and b values only over the quantum number  m we obtain an 
exchange potential that  depends on the quan tum numbers  n and I and on the spin 
direction. The method using these a and b values will be called "spin-polar ized 
simulated H a r t r e e - F o c k "  (SP-SHF) method, which simulates unrestricted H F  
calculations. Averaging the a and b values also over both  spin directions, a nl- 

dependent  exchange potential is obtained and the method employing these param- 
eters will be termed "simulated H a r t r e e - F o c k "  (SHF) method,  which should be 
compared with restricted H F  calculations. If  the SHF  parameters are calculated 
for a number  o f  different atoms (as was actually done for the a toms He to Zn) 
the Z-dependence o f  the a and b values can be approximated by the equations 

a , . ( Z )  = A,~z + A ' , Z ,  (20) 

b . , ( z )  = B.,  + B~,Z. (21) 
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Table 2. One-electron energies (in Ryd) of the iron atom, Fe ls22s22p63s23p6(3d ~ )~(3d ~, )14sa 
in its ground state 5D 

SP-SHF SHF ASHF RHF UHF HFS 

ls ~ --523.4170 -523.4122 -523.7161 -522.7472 --522.7489 --515.7652 
ls + -523.4176 --522.7497 

2s ~ -63.8864 -63.8274 --64.0376 -63.8717 -63.9986 -60.9018 
2s ~ -63.7781 -63.7529 

2p t  -54,9161 - 54,8573 -54.9326 -54.8280 -54.9506 -53.0300 
2p~ -54,8082 - 54.7133 

3s ~ -8.6353 -8.2658 -8.3759 -8.3389 -8.3389 -7.2108 
3s ~ --7.9046 -7.9881 

3p~ -5.9292 -5.4706 -5.5863 --5.4843 --5.9166 --4.8330 
3p~ - 5.0731 -5.0591 
3d~ - 1.4654 --1.3761 
3d ~ - 1.0430 - 1.3908 - 1.2482 - 1.2938 -0.9374 -8.9060 

4s ~ -0.5342 -0.5544 
-0.4991 -0.5282 -0.5163 -0.4775 4s+ -0.4708 -0.4844 

SP-SHF 
SHF 
ASHF 
RHF 
UHF 
HFS 

spin polarized simulated Hartree-Fock 
simulated Hartree-Fock 
averaged simulated Hartree-Fock 
restricted Hartree-Fock [10] 
unrestricted Hartree-Fock [16] 
Hartree-Fock-Slater 

where the values of A, A', B, and  B' are listed in Table 3. This kind of approxima- 
t ion  will be called "averaged simulated H a r t r e e - F o c k "  (ASHF)  method. 

The one-electron energies of the iron atom in its ground state obtained by the three 

s imulat ion methods described above are given in Table 2, which also contains the 
corresponding H F  results and  the Har t ree -Fock-Sla te r  (HFS) one-electron energies 
using Slater's exchange potential.  

Table 3. Values for ASHF as defined in Eqs. (20) and (21) 

A A' B B' 

ls 0.86349 0.00168 0.07355 0.22703 
2s 0.79733 0.00403 0.00231 0.04415 
2p 0.76212 0 .00003  --0.08952 0.05497 
3s 0 .85025  -0.00310 -0.24691 0.02915 
3p 0 .73488  -0.00058 -0.20588 0.02458 
3d 0.63462 --0.00159 -0.22931 0.02449 
4s 1 .55562 --0.04228 --0.25650 0.01815 

6. Discussion 

The one-electron energies for the iron atom (Table 2) show that  the simulation 

methods proposed here reproduce the corresponding H F  results quite well 
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considering the simplicity of the simulations, where the SP-SHF results should be 
compared with unrestricted HF (UHF) results, and the SHF and ASHF methods 
correspond to the restricted HF (RHF) method. Relatively large deviations are 
found for the 3d electrons for which the SP-SHF and SHF methods overestimate 
the HF exchange potential. 

The overall good agreement between the one-electron energies obtained with the 
SHF and RHF methods remains about the same if the SHF method is replaced 
by the much simpler ASHF approximation (Table 2), where the a and b parameters 
required can easily be obtained for every atom (He-Zn) from Eqs. (20) and (21) 
using Table 3. 

The direct comparison between the HFS and HF results is complicated by the fact 
[4, 5, 14] that the one-electron energies in the HF method and in the local potential 
schemes are interpreted differently. Therefore the HFS values differ markedly from 
all other results listed in Table 2. 

Considering the wave functions it is found that the HF, the simulated HF, and the 
Xavt results are very similar, but all of them deviate considerably from the HFS 
wave functions. This deviation of the HFS wave functions from the HF results has 
already been discussed [4]. 

In contrast to the local potential schemes, where the exchange (and correlation) 
potential is orbital independent, different potentials for different orbitals are used 
in a SHF calculation and therefore the SHF wave functions are not necessarily 
orthogonal to each other. However, since the SHF orbitals are very similar to HF 
orbitals, which are orthogonal, the non-orthogonality of the SHF wave functions 
should be of minor importance. 

7. Conclusions 

It is possible to simulate unrestricted and restricted HF calculations on atoms by 
replacing the exchange term in the HF one-electron equations for each orbital by a 
linear radial dependent form involving Slater's exchange approximation. With this 
new simulation both the HF one-electron energies and the HF  wave functions can 
be reproduced accurately considering the simplicity of the simulation, particularly 
that of the ASHF method. 

The proposed HF  simulation method could be carried over to energy band structure 
calculations on solids. The necessary a and b parameters could be taken from the 
free atoms, if the electrons in the solid are fairly well localized and if it is obvious 
which bands will be occupied in the solid. This last restriction comes about since 
the HF (and thus also the SHF) exchange potentials differ substantially between 
occupied and unoccupied levels. Ionic insulators are a type of solid where these 
requirements are satisfied and hence the suggested simulation could be useful. 
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Appendix 

The derivation of Eq. (14) given here is due to Herzig [9]. The phase convention of 
Condon and Shortly is used for the spherical harmonics. 
Consider 

,,,a = Yt,m,(~,m,) - 1 rTm df~ = ( -  1)= Yz,,~,(Y,,m,) - 1 y,. _,. am. 

Then the product of *:he two spherical harmonics in the numerator of the integral 
can be written as a linear combination of spherical harmonics (Edmonds [15], 
eq. (4.6.5)), 

Arntmtm ,,,a = ( - 1 ) "  ~ [(21, + 1)(2I + 1)(2L + 1)/(4rr)] *t= 
LM 

�9 mj - m 0 0 YLM(Ylimt) df~, 

and with 

* = ( -1 )~ 'yL,_~ ,  YLM 

( _ 1 ) ~ + ~  = (--1)m,, 

then 

AmjmFn ,,,,, = ( -11  =, ~ [(2/,- + 1/(21 + I)(2L + l)/(4-u)] ltu 
LM 

l 

Define the coefficients mjm,~ C~z,~ , which can be expressed in terms of the 3-j coefficients 
using [15], eq. (4.6.3) as follows 

cmjmtm f * f Z,l,t = Y]jm s Yz~ Yt,r~, d~q = ( -  1)'J Ytj. -,., Yz~ Yhm~ d~ 

=( - ] ) ' ~ J [ (21 j+ l ) (21+ l ) (21~+  1)[(4zr)]lt2( lj l l~ ) (~ l ~ ) ,  
- -  m ~  m m ~  0 . 

It is 

( lj 1 1,) = ( _ l ) ~ + , + q ( ~  , l l~ ) 
- m ,  m m, - m  - m i  

([15], eq. (3.7.6)). Then 

c7,1,7 ''~ = (-I)'~,~:(21j + 0(21 + 1)(21, + I)/(4~,)p,~ 

which vanishes if the sum lj + l + l~ is odd. 
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Combining the results and summing over rnj and m we have 

mjm~rn __ Ylfld -- ~ /lmtmtmt'-'rntratm 
zTtlllil k.'ltt~! 

m~ra mtrn 
= ~ [(21j + 1)(2l + 1)/(4rr)][(2L + 1)(2l, + 1)] ~/2 

LM 

I 
' o)( o ' ' ':) 

�9 f YL,-M(Y',m,) -1 dO. 

Applying the orthogonality relation of  the 3-j coefficients ([15], eq. (3.7.8)) and using 

f Yhm,(Yh,,,,) -~ dO = 4rr 

we obtain the result 

s vm'm'ra= (21i + 1)(2l+ 1)(~ 1 ~) 
rnjrtl 0 

Since this sum is independent of  m~ a summation over m~ gives only a factor of  
(21~ + 1), and we have finally 

Ylmt[,~ 'm = (21 i + 1)(21j" + 1)(2l + 1) 0 0 
mimtm 
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